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The article considers the temperature distribution around an evaporating drop in a vapor
medium. The transfer of energy is effected by molecular thermal conductivity, convection,
and radiation. The mean length of the free flight path of the radiation considerably exceeds
the characteristic distance at which the temperature changes. The times required for re~
laxation of the temperature to a steady-state value are determined, as well as the charac~
teristic distances at which the temperature distribution changes.

1. Basgic Equations. Asis well known, the transfer of energy by convection, molecular ther-
mal conductivity, and radiation is described by the equations [1, 2]
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Here r is the distance to the center of the drop; t is the time;p, Cps V, are the density, the heat ca-
pacity, and the radial component of the velocity of the vapor medium; ¢ is the radius of the drop; the sub~
script ¢ denotes quantities referring to the surface of the drop; T, » are the temperature and the molec-
ular thermal conductivity; 1/« is the mean length of the free flight path of the radiation; ¢ is the Stefan—
Boltzmann constant; ¢ is the speed of light. The last equation is justified with local thermodynamic equi-
librium, for which [3] contains an investigation of the conditions for its applicability.

The density of the radiant energy U and the radial component of the density of the radiant heat flux S
are connected with the intensity I(r, 6) in the following manner:

U= ZT“S Isin0ds, §— ZnSIcosesinede
0 [}
The intensity of the radiation far from the drop L,=(c/r) Tl is determined by the temperature of
the medium, i.e., T.

It is assumed that the characteristic distance ry, at which the temperature T, is established, satis-
fies the condition ary<« 1. In this case, with an accuracy up to terms on the order of ary, the intensity of
the radiation is equal to

I(r, ) =1I(a, 6) at 0<arcsin a/r
I, 9)=—%~T°°4' at arc sin -g—<9<31
I(a,0)=e(6/m) T, +(1 —e)(s/m) Tt
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Here ¢ is the effective degree of blackness. It follows from this that

4 285 ad
U= 7812 (18 1 [1_(1-—,,—) ] (1.2)
From (1.1) and (1.2) we can obtain an equation describing the temperature distribution arounda drop,

oT 2 T 1 8 oT Y
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The initial and boundary conditions have the form

I'r,0)=T1w, r>a; Ta,t)=T,; t>0
© Tint)—>Te at r—oo (1.4)

The formulation of the problem is found to be open, since the velocity of the vapor at the surface of
the drop and the temperature of its suriace, generally speaking, depend on the temperature distribution
within the drop. However, in what follows we consider also conditions for the evaporation of a drop which
are such that the characteristic times of the change in the velocity of the vapor, of the radius of the drop,
and of the temperature of its surface, considerably exceed the relaxation time of the temperature in the
vapor. In this case, in calculation of the temperature distribution around the drop, we can leave out of
consideration the nonsteady-state character of the process, connected with a change in the quantities a,

Ty, Vg

If [T, =T, | « T, then in Eq. (1.3) we can leave out of consideration the dependence of p, cp, and %
on the temperature, and can linearize this equation with respect to T.

Then
LT PedT 10 LT 77, (1.5)
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From this it is evident that the characteristic distance at which the temperature changes is deter~
mined by the quantities g, Pa, and p, the largest of which, as was assumed in the derivation of this equa-
tion, must be negligibly small in comparison with 1/c.

It is well-known [4] that, with the radiant transfer of energy, the temperature undergoes a discontin-
uity on a sphere. Molecular thermal conductivity leads to a smoothing out of this discontinuity. Itis
shown below that convective transfer of energy also eliminates the discontinuity in the temperature.

Let the temperature vary sharply in g thin layer r—g ~ 8 «<q near the surface of a sphere.

The steady-state temperature distribution in this layer, as follows from (1.5), has the form
T—T, (a) : — 2p 4a® \Y
TR (o) 0= [ i)
Thus, in the absence of convection, 6=. With large Péclet numbers (P? > 442/u?), the thickness of

the thermal boundary layer increases substantially 6 =p2P /g and is found to be independent of the value of
the coefficient of molecular thermal conductivity.

2. Molecular Thermal Conductivity and Convection. If the temperature of the me-
dium is such that g >»a, > Pa (au « 1), the temperature distribution, as is evident from Eq. (1.5), is de-
termined by the molecular thermal conductivity and by convection. In this case, as is well-known [5], a
steady~state solution can be obtained even without the assumption of a small temperature drop between the
surface of the drop and infinity.

With lTa—Tool « T, the temperature distribution is described by the equation

10T  Padl 1 3 ,aT

ER R R i (2.1)
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the steady-state solution of which has the form

_l—exp(—Palr) o oo
~mERD, Tz (2.2)

~

With large Péclet numbers, the heat flux is an exponentially small quantity. Far from the sphere
(r>Pg), the distribution of the temperature has exactly the same form as in the absence of convection
around a sphere with the effective radius g,

T=aur, a,=Pajl—eP) (2.3)

If convective transfer of heat is neglected, then, as is well-known

- a r—a 2
T = Terfc( Vi ), erfcz = v
This solution is the product of the steady-state temperature distribution, determined by the molec-
ular thermal conductivity, by a function describing the rate of propagation of the front of the thermal wave.
By analogy with (2.4), it can be assumed that the function

j exp (— t?) dt (2.4)

e {1 —exp(— Pa/r) r—a
T= f
o et

will differ only slightly from the exact solution of Eq. (1.4), with K>a, k> Pa.
Actually, if the function

T=® @) ¥, 1)
a d® 1 d daod 1 ¥ &Y
R S )
r r r r X ot ar
is substituted into the starting equation (2.1), we can obtain

1 ¥ 4 Pa dO 1 d a0 dd D\ ¥ P oY
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Taking into account that

oY v _¢_i_q)_ Pa® i g ¥
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it is evident that the function ¥ satisfies the starting equation when any of the following conditions is
satisfied:

2> PaVit, r2<€PaVity r>Pa
Thus, the relaxation time of the temperature in the region r~Pq is a quantity on the order of P%;2/¥.

3. Molecular Thermal Conductivity and Radiation. With small Péclet numbers
(P« 1), in Eq. (1.5), convective transfer can be neglected:

1 T _ T » (T —T,)
™ et ot T e @3.1)

The solution of this equation, with the boundary and initial conditions (1.4), has the form

r(f—To)=a{l,—=T)G(r—a,t) +F7r;;-[T*(r')—Tm] G(r—r|,t) =G (r+r" —2a,t)] dr (3.2)
G(r,t)=%[exp (— -}—i—)erfc(zl;ﬁ — 1;&; )—kexp(&)erfc(z‘;ﬁ -+ Vp‘ﬁ )] (3.3)

The steady-state solution is described by the same formula (3.2), but with the replacement of G(r, t)
by the function
G (r) =exp (—r/p)

As is evident from formula (3.3), in the region r «pu, there exist two characteristic times for the
change in the temperature: with small times, r? /X, and at large times, uz/x. In the region rsu, a steady-
state temperature distribution is established after a time t ~pur/%.
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Let i > g3 then, at t>p?/x, with an accuracy up to terms whose order of magnitude, in accordance
with formula (3.2) does not exceed ¢ (g/1) In (i /a), the temperature distribution has the form

T = %,exp (—

r—a)

(3.4)

Molecular thermal conductivity is found to be considerable in a layer with a thickness p.
These results are in agreement with those obtained earlier [6, 7].

I, in the presence of convection, the condition Pg «u is satisfied, then, in the region Pg <r <y, where
only molecular thermal conductivity is significant, formulas (2.2) and (3.4) are applicable.

As a result of asymptotic joining, the following temperature distribution is obtained:

=3

_ 1 —exp(— Pa/r) _ r—a
- 1—¢ P eXp( [ )

4. Convection and Radiation. Under conditions of the predominant effect of convective-
radiative transfer of energy, the nonsteady-state temperature distribution is described by the equation

1 ar Pa oT T T
T Tt E s (4.1)

with the initial and boundary (at r=¢4) conditions (1.4).

The solution of this equation has. the form
”»e

i —_ g
T=“(t“ 3Pax )‘”‘p( 3p2pa )+
‘(r')— o0 P —p3 3—r’3
+5 pspa T,—7T. “(‘ — ~3Pay ) exP( 3WPa )-d"'
1, >0
n®={
0,t<0
The region of applicability of this equation corresponds to the assumption that the distance at which
the thermal front becomes diffuse as a result of molecular thermal conductivity is negligibly small in
comparison with the distance traversed by the front after the same time, i.e.,
(xt): << (Payt)h
Radiative equilibrium is established in the region r®~3u2Pg, after a time t~p2/x.

As is evident from the solution obtained, at sufficiently large times, this inequality cannot be sat-
isfied.

The steady-state temperature distribution

T=Taexp(-— r—a )-I—j: rT, ()] exp(_ _,-a__,ils_)dr'

3u2Pa WiPa 3u2Pa

differs from that calculated in the approximation of radiative equilibrium only in the region =43 23u2P,.

As an evaluation shows, at 4 > ¢ the transfer of energy by molecular thermal conductivity may be
neglected if p <« Py. In this case, the transition to radiative equilibrium r® ~p%Pg takes place in the region
r << Pa.

With p <<, as shown in Section 1, molecular thermal conductivity may be left out of account in Eq.
(1.5) at P23 44%/u.

The authors thank V. G. Levich for his evaluation of the results obtained.
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