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The a r t i c l e  cons ide rs  the t e m p e r a t u r e  distr ibution around an evapora t ing  drop in a vapor  
medium.  The t r a n s f e r  of energy  is  e j e c t e d  by molecu la r  t he rma l  conductivity, convection,  
and radiat ion.  The mean length of the f r ee  flight path of the radiat ion cons iderably  exceeds  
the c h a r a c t e r i s t i c  dis tance at which the t e m p e r a t u r e  changes.  The t imes  requ i red  for  r e -  
laxation of the t e m p e r a t u r e  to a s t eady- s t a t e  value a re  determined,  as well as the c h a r a c -  
t e r i s t i c  d is tances  at which the t e m p e r a t u r e  distr ibution changes.  

i. B a sic E q uati on s. As is well known, the transfer of energy by convection, molecular ther- 
mal conductivity, and radiation is described by the equations [i, 2] 
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Here  r is  the dis tance to the cen te r  of the drop; t is the  t ime;  p, Cp, v, a r e  the density,  the heat  c a -  
paci ty,  and the radia l  component  of the ve loc i ty  of the vapor  medium;  a is  the radius  of the drop; the sub-  
sc r ip t  a denotes quanti t ies  r e f e r r i n g  to the su r face  of the drop; T, ~ a r e  the t e m p e r a t u r e  and the m o l e c -  
u la r  t h e r m a l  conductivity; 1 / ~  is  the mean length of the f ree  flight path of the radiation; ~ is the S t e f an -  
Bol tzmann constant;  c is the speed of light. The las t  equation is  justif ied with local the rmodynamic  equi-  
l ib r iam,  for  which [3] contains an invest igat ion of the conditions for  i ts  applicabil i ty.  

The densi ty  of the radiant  ene rgy  U and the radia l  component  of the densi ty of the radiant  heat  flux S 
a r e  connected with the in tens i ty  I ( r ,  0) in the following manner :  

U = c , S = 2~ I cos O sin O dO 
0 o 

The in tens i ty  of the radiat ion fa r  f r o m  the drop I~ = (o-/~') Too 4 is  de te rmined  by the t e m p e r a t u r e  of 
the medium,  i .e. ,  T~. 

I t  i s  a s s u m e d  that the c h a r a c t e r i s t i c  dis tance r0, at which the t e m p e r a t u r e  T~ is  es tabl ished,  s a t i s -  
t ies  the condition o~r 0 << 1. In this ease ,  with an accu racy  up to t e r m s  on the o rde r  of ~r0, the intensi ty  of 
the radiat ion is  equal to 

I ( r ,  0) = I ( a ,  0) at 0 ~ a r c s i n a / r  
a 

t (r, o) = -~  T~" at aro sin 7 < 0 <~ 

I (a, O) = e (o I n) Ta 4 ~ (1 --  e) (~j ~) Too 4 

MOSCOW. Trans la ted  f r o m  Zhurnal  Pr ikladnoi  Mekhaniki i Tekhnicheskoi  FiziM, No. 1, pp. 74-78, 
J a n u a r y - F e b r u a r y ,  1972. Original  a r t i c l e  submit ted  July  28, 1970. 

�9 1974 Consultants Bureau, a division o f  Plenum Publishing Corporation, 227 ~'est 17th Street, .'Yew York, N. u 10011. 
No part of  this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, 
clectronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of  the publisher. A 
copy of  this article is available from the publisher for $15.00. 

63 



Here  ~ is  the effect ive degree  of blackness.  I t  follows f rom this  that  

a= ~v, l T j (1 .2/  U = -T- - ~  

F r o m  (1.1) and (1.2) we can obtain an equation descr ib ing  the t e m p e r a t u r e  distr ibution a rounda  drop, 

OT a ~ a T  l 0 ~ OT 

- -  r2 / j (1.3) 

The initial and boundary conditions have the form 

T(r ,O)=Too,  r > a ;  T ( a , t ) = T = ,  t > 0  
r (r, t) ~ r~o ~t r o oo (1.4) 

The formula t ion  of the p rob lem is  found to be open, s ince the ve loc i ty  of the vapor  at  the sur face  of 
the drop and the t e m p e r a t u r e  of i t s  sur face ,  genera l ly  speaking, depend on the t e m p e r a t u r e  distr ibution 
within the drop.  However,  in what follows we cons ider  also conditions for  the evaporat ion of a drop which 
a re  such that  the c h a r a c t e r i s t i c  t imes  of the change in the veloci ty  of the vapor ,  of the rad ius  of the drop, 
and of the t e m p e r a t u r e  of i t s  sur face ,  cons iderab ly  exceed the re laxa t ion  t ime  of the t e m p e r a t u r e  in the 
vapor .  In this case ,  in calculation of the t e m p e r a t u r e  distr ibution around the drop, we can leave out of 
considera t ion the nons teady-s ta te  c h a r a c t e r  of the p r o c e s s ,  connected with a change in the quanti t ies a,  
Ta, v a.  

I f  IT a-Tool  << Too, then in Eq. (1.3) we can leave  out of considera t ion  the dependence of p, ep, and x 
on the t e m p e r a t u r e ,  and can l inea r ize  this  equation with r e spec t  to T. 

Then 
t OT . P a O T  1 O r2 a T  T - - T .  
Z at - t - -~-~r= T ~ "  Or # 

~a a ;4 ~t 2 -~  X 
-P = - ~ - ,  Z = pc'-~ ' t6~zaToo s 

(1.5) 

F r o m  this  it i s  evident that  the c h a r a c t e r i s t i c  dis tance at which the t e m p e r a t u r e  changes is  d e t e r -  
mined by the quanti t ies  a,  Pa ,  a n d g ,  the l a rge s t  of which, as  was a s s u m e d  in the der ivat ion of this equa-  
tion, mus t  be negl igibly smal l  in compar i son  with 1/c~. 

I t  i s  wel l -known [4] that,  with the radiant  t r a n s f e r  of energy,  the t e m p e r a t u r e  undergoes  a discont in-  
uity on a sphere .  Molecular  t he rm a l  conductivity leads to a smoothing out of this discontinuity.  I t  i s  
shown below that  convect ive t r a n s f e r  of ene rgy  a lso  e l imina tes  the discontinuity in the t e m p e r a t u r e .  

Let  the t e m p e r a t u r e  v a r y  sharp ly  in a thin l aye r  r - a  ~ ~ <<a n e a r  the sur face  of a sphere .  

The s t eady - s t a t e  t e m p e r a t u r e  distr ibution in this l ayer ,  as  follows f r o m  (1.5), has  the fo rm 

~-: : - -~-r ,~)  = ~ ,  ~=--~-= +(~+-~eT) 3 

Thus, in the absence  of convection, 6 =~. With l a rge  P6ele t  n u m b e r s  (p2 >> 4~Z2/~2), the th ickness  of 
the t he rma l  boundary l aye r  i n c r e a s e s  substant ia l ly  6 =l~2P/a and is  found to be independent of the value of 
the coefficient  of molecu la r  t he rm a l  conductivity.  

2 .  M o l e c u l a r  T h e r m a l  C o n d u c t i v i t y  a n d  C o n v e c t i o n .  If  the t e m p e r a t u r e  of the m e -  
dium is  such that/~ >>a,/~>> ida (a/~ << 1), the t e m p e r a t u r e  distr ibution,  as  is  evident f r o m  Eq. (1.5), is  de-  
t e r m i n e d  by the molecu la r  t he rm a l  conductivity and by convection. In this case ,  as  i s  well-known [5], a 
s t eady- s t a t e  solution can be obtained even without the assumpt ion of a smal l  t e m p e r a t u r e  drop between the 
sur face  of the drop and infinity. 

With IT a -Tool << Too, the t e m p e r a t u r e  distr ibution is  desc r ibed  by the equation 

1 0 T  , P a  OT l O 2 0 T  
X Ot t--7~-~Tr ~'T~-~-r r b';'r (2.1) 

64 



the s teady-s ta te  solution of which has the form 

~- _ t - e x p ( - - P a ] r )  - -  T - - T ~  
t - - e -  P , T ----- Ta__T~------ ~ (2.2) 

With large P6clet  numbers ,  the heat flux is an exponentially small  quantity. Far  f rom the sphere 
(r> P a ) ,  the distribution of the t empera tu re  has exactly the same form as in the absence of convection 
around a sphere with the effective radius a .  

= a . / r ,  a ,  = P a / ( l  - -  e-P) (2.3) 

If convective t rans fe r  of heat is  neglected, then, as is well-known 

o o  

= ~ eric 2--V~- ' eric x = --CZ e~p ( - -  t~) dt (2.4) 

This solution is the product  of the s teady-s ta te  t empera ture  distribution, determined by the molec -  
ular  thermal  conductivity, by a function describing the rate  of propagation of the front  of the thermal  wave. 
By analogy with (2.4), it can be assttmed that the function 

= t --exp(-Pa/r) f f r - a  \ 

, - e P  er ~  

will differ only slightly f rom the exact solution of Eq. (1.4), with ~ >>a,/z >> Pa. 

Actually, if the function 

= �9 (r) ~F (r, t) 
"( a dO t d r dO t c3~F Oz~ ) 

P"~" dr -- r ~ dr dr ' X Ot -- Or 'z 

is substituted into the start ing equation (2.1), we can obtain 

~p( i_~ Ovt 0 2 ~  ~ ~j, [ Pa  d O  i d 2 d r  ~ 2 / d(P tYP ~ O~F P a  (i) O ~  

Taking into account that 

O~F �9 dfl) PafI) O ~  ~" 

Ot ~ t ' dr ~ r ~ ' Or ~ ] / - ~  

it is  evident that the function ~,Is sat isf ies the s tar t ing equation when any of the following conditions is 
satisfied: 

~>~P~ V~, r2~p~ V~,  ~>~p~ 

Thus, the relaxation t ime of the tempera ture  in the region r ~ Pa is a quantity on the order  of p 2 a 2 / •  

3.  M o l e c u l a r  T h e r m a l  C o n d u c t i v i t y  a n d  R a d i a t i o n .  With small  P6clet  numbers  
(P << 1), in Eq. (1.5), convective t r ans fe r  can be neglected: 

1 OfT O~rT r ( T - - T , )  
Z Ot -- 0--g7r = -- tL~ (3.1) 

The solution of this equation, with the boundary and initial conditions (1.4), has the form 
r 1 6 2  

r' T ' r '  r' r ( T - - T ~ ) = a ( T ~ : - ~ T ~ ) G ( r - - a , t ) §  - ~ [  . ( r ) - - T ~ ] [ G ( I r - -  ] , t ) - - G ( r +  - - 2 a ,  t ) l d r '  (3.2) 

G ( r , t )  : i ' u  ) -~exp(--~)erfc(~--~ + Y~7~] (3.3)  [ ( §  ( 
The s teady-s ta te  solution is descr ibed by the same formula (3.2), but with the replacement  of G(r, t) 

by the function 

G (r) = exp (--r / ~t) 

As is  evident f rom formula (3.3), in the region r <<#, there  exist two charac ter i s t ic  t imes  for the 
change in the tempera ture :  with small  t imes,  r2/X, and at large t imes , /~ /X.  In the region r ~ # ,  a s teady-  
state t empera tu re  distribution is  establ ished after  a t ime t ~ l . t r / x .  
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Let/~ >> a; then, at  t >p2/X, with an accu racy  up to t e r m s  whose o rde r  of magnitude,  in accordance  
with fo rmula  (3.2) does not exceed  e (a/P) In (p/a), the t e m p e r a t u r e  distr ibution has  the fo rm 

/ ' - - a  ) (3.4) 
~ o l e c u l a r  t h e r m a l  conductivity is  found to be cons iderable  in a l aye r  with a th ickness/~.  

These  resu l t s  a r e  in a g r e e m e n t  with those obtained e a r l i e r  [6, 7]. 

If, in the p r e s ence  of convection, the condition Pa <<P i s  sat isf ied,  then, in the region Pa < r  <p, where  
only molecu la r  t he rma l  conductivity is  significant,  fo rmulas  (2.2) and (3.4) a r e  appl icable .  

As a r e su l t  of a sympto t i c  joining, the following t e m p e r a t u r e  dis t r ibut ion is  obtained: 

~ = 1--exp(-- Pal r) ( r - - a )  
t - -  e -P e x p .  -~ 

4 .  C o n v e c t i o n  a n d  R a d i a t i o n .  Under conditions of the p redominant  effect  of convec t ive-  
radia t ive  t r a n s f e r  of energy,  the nons teady-s t a t e  t e m p e r a t u r e  distr ibution is  desc r ibed  by the equation 

I OT Pa OT T T,  
Z Ot -'~ -~ Or ~---~-= i---- ~ (4.1) 

with the ini t ial  and boundary (at r = a )  conditions (1.4). 

The solution of this equation h a s  the f o r m  

T =  ~l ( t  r~- -a '  3Pax ~) exp ( rs_ a3 , 3p,2pa ) -~" 
i r,~ T.(r')--T ( rS_r,S) ( r~_r,~) 

+ I~'Pa T - - T  o ~i t - - ~  exp  3~sp a d f  
a 

{ 1, t > 0  
( t )=  o, t < 0  

The region of appl icabi l i ty  of this equation co r re sponds  to the assumpt ion  that  the dis tance at  which 
the t he rma l  front  becomes  diffuse as a r e su l t  of mo lecu l a r  t he rma l  conductivity i s  negl igibly smal l  in 
compar i son  with the dis tance t r a v e r s e d  by the front  a f t e r  the s ame  t ime,  i .e . ,  

(xt)'/' ~ ( P axt ) 1/" 

Radiat ive equi l ibr ium is  es tab l i shed  in the region r s ~ ~ Z P a  a f t e r  a t ime  t ~p2/x .  

As is  evident f rom the solution obtained, at suff iciently l a rge  t imes ,  this  inequal i ty  cannot be s a t -  
isf ied.  

The s t eady- s t a t e  t e m p e r a t u r e  dis tr ibut ion 

( r S - - a a )  i r'~T.(r')l ( rs-r's ) 
T ---- TaeX p 3~t~P~ + i~zp a exp ~ 3~p a . dr" 

a 

differs  f r o m  that  calcula ted in the approximat ion  of radia t ive  equi l ibr ium only in the region rS -a3~  3p2pa. 

As an evaluation shows, at/~ >>a the t r a n s f e r  of energy  by mo lecu l a r  t he rma l  conductivi ty m a y  be 
neglected if  p << Pa.  In this case ,  the t rans i t ion  to radia t ive  equi l ibr ium r s ~g2Pa t akes  p lace  in the region 
r << Pa. 

Withp <<a, as shown in Section i, molecular thermal conductivity may be left out of account in Eq. 
(1.5) at 132 >> 4a2/p 2. 

The authors  thank V. G. Levich for  his  evaluation of the r e su l t s  obtained. 
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